Direct observation of 1000m deep convection in the Irminger Sea by ARGO-O2 floats during winter 2011-2012
A. Piron(1), H. Mercier(1), V. Thiery(1), G. Caniaux(2)

1. Summary
Using ARGO float data, we describe here an intense deep convection event, covering a large area in the Irminger Sea during winter 2011-2012.

2. Past observations of deep convection in the Irminger basin: limited in space and time

- Våge et al., 2008 (Nature Geosci.)
 MLD 1000m (April 2008)
- Bacon et al., 2003 (GRL)
 MLD 700m and 1000m (August-September 1997)
- Pickart et al., 2003 (DRSL)
 MLD 1800m (June 2006)
- de Jong et al., 2012 (DRSL)
 MLD > 800m at LOCO2 and LOCO3 (winters 2007-08 and 2008-09)

Past observations of deep convection were generally obtained after summer restratification.

3. Observation of the 2011-2012 convective event with ARGO data

- The convection event spreads over such great domain! We identify:
 - a pre-convective phase from 19 January to 9 March, 2012 (9.5 weeks) with different pre-convective areas
 - a short deep convection phase between 10 and 25 March, 2012 reaching 1000m depth
 - a rapid restratification in some days after 25 March, 2012

4. Active mixing

- ARGO oxygen data highlight an active mixing

5. Mixed layer deepening

- The gradual deepening of the mixed layer from November, 2011 to March, 2012 is marked by:
 - a short restratification period early February
 - a late rapid deep convective activity (10-16 March)

6. Link to atmospheric forcings

- Air-sea heat fluxes explain at the first order the heat content variation in the mixed layer and the gradual deepening of the MLD from November, 2011 to March, 2012.
- Reduced heat loss end of January/early February explains the observed short restratification phase during this period.
- The deepening of the MLD up to 1000m is caused by a late event of intense heat loss occurring between mid-February and mid-March, 2012 linked to high NAO-index characterized by strong winds and successive low-pressures over the Irminger Sea (not shown here).

Conclusion: this study presents the first direct observation of much widespread deep convection in the Irminger Sea than ever observed before, thanks to several ARGO floats cruises in the area.

REFERENCES:
- Bacon et al., 2003 (GRL), doi:10.1029/2003GC000871
- de Boyer Montégut et al., 2004 (GRL), doi:10.1029/2004GC000531
- de Jong et al., 2012 (DSRSL), doi:10.1002/joc.2050
- Thomson and Frey, 2003 (AMS), doi:10.1175/1520-0426(2003)01520426(0.0)2.0.CO
- Pickart et al., 2003 (DSRSL), doi:10.1068/002532003301281
- Våge et al., 2008 (Nature Geosci.), doi:10.1038/NGEO382

Contact: anne.piron@ifremer.fr

[1] LPO (Laboratoire de Physique des Océans), UMR 6523 CNRS/IFREMER/IRD/UBO, Plouzané, France